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Determination of fracture stress and strain 
of highly oriented short fibre-reinforced 
composites using a fracture mechanics-based 
iterative finite-element method 
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For a tensile test specimen made of a short fibre-reinforced composite with the fibres 
oriented in the direction of force, a model was developed to describe the onset and 
propagation of microcracks, which finally lead to macroscopic failure of the specimen. The 
crack propagation theory used is based on a standard fracture mechanics method and was 
applied to the microstructure of the specimen by the finite element method. The results 
appear qualitatively correct. The micromechanical method applied gives a deeper insight 
into the fracture processes within short fibre-reinforced composites. 

1. In troduct ion  
The failure stress and strain of a short fibre-reinforced 
composite under continuously increasing tensile load 
depends on the macroscopic geometrical shape of the 
body, the introduction of forces into the body, the 
material properties (which may in turn depend on the 
rate of stress/strain increase, humidity and temper- 
ature), the existence of flaws and micro- or macrocracks 
as well as the microscopic positioning of the fibres. In 
this paper, a standard tensile test specimen under 
a steadily increased external load is considered. It is 
assumed that all the fibres are oriented in the direction 
of the external load and that they are periodically 
placed within the specimen. It is further assumed that 
there are no flaws such as air inclusions or microcracks. 

Tensile test specimens made of short fibre-rein- 
forced composites are usually fabricated by injection 
techniques. The flow field of the initially molten ma- 
terial leads to a strong orientation of fibres in the 
injection direction [1, 2], which in the later testing is 
the direction of applied force. For such specimens, 
several authors observed the onset of acoustic emis- 
sion after some initial specimen deformation [3-7].  
These acoustic emissions correspond to microfailure 
events within the specimens. The number of emission 
signals per unit strain rises approximately exponenti- 
ally with increasing strain. Since at the lower strains 

a specimen is deformed uniformly it is reasonable to 
assume that the failure events are evenly distributed 
over the volume of the specimen. 

This assumption is strengthened by observations of 
Sato et al. [8, 9] who investigated the continuously 
loaded tensile stressed side of a short glass fibre- 
reinforced polyamide 66 specimen (/f =0 .4mrn ,  
df  = 13 gm, Vf = 16%) under a scanning electron 
microscope: 

�9 At low strains, microcracks close to the fibre ends 
were formed within the matrix. Concurrently, 
matrix flow was observed near the fibre ends. 

�9 At about 75% of the specimen rupture load the fibre 
ends lost contact with the matrix and microcracks 
starting at the fibre ends propagated along the sides 
of the fibres. 

�9 With a further increase in load, microcracks formed 
between adjacent fibres and matrix flow was ob- 
served near these microcracks. 

�9 Finally the cracks grew together, thus leading to 
macroscopic failure of the specimen. 

Similar observations were made by Choi [3] and 
Curtis et aI. [10]. 

Based on these observations, a microscopic failure 
model for a short fibre-reinforced specimen should 
describe the onset and development of microcracks 

* Present address: Rasna Corporation (Europe), Am Kronberger Hang 2, 65824 Schwalbach-Kronberg, Germany 
t Present address: Asea Brown Boveri, Corporate Research Center, CRH, Czernyring 22, 69115 Heidelberg, Germany 

0022-2461 �9 1995 Chapman & Hall 481 



distributed over a specimen with increasing load. The 
final failure in such a model appears when the cracks 
grow together, dividing the model in half. 

Termonia [11] developed a finite difference type 
model based on several perfectly oriented but ran- 
domly distributed fibres of differing lengths in a matrix. 
In his model the total strain is increased gradually and 
the kinetic failure theory together with a Monte-Carlo 
scheme is used to predict the failure of individual 
"bonds" between nodes. Special consideration is given 
to the fibre matrix bonding, which was varied in the 
investigations. The first results presented fit the experi- 
mental observations discussed above; further experi- 
mental investigation, however, is still necessary. 

In this paper the extensions of microscopic cracks 
are described on the basis of fracture mechanics, not 
bond strength. Fracture mechanics methods have 
proved to be reliable for macroscopic bodies with 
cracks (locations with infinite stresses). 

2. Description of the model 
2.1. Finite element (FE) model of an 

undamaged specimen 
In an earlier contribution [12] a 3-dimensional finite 
element model of a highly oriented short fibre-rein- 
forced composite was described and discussed. This 
model possessed several properties, the simplest of 
which was the good predictions it gave of composite 
stiffness. Since the intended micromechanicat fracture 
description required a finer mesh, this 3D model had 
to be reduced to two dimensions in order to save,  
nodes and elements, thereby enabling a 2D mesh re- 
finement. We will merely outline the derivation of this 
2D model here; for details see [1] or [123. 

Fig. 1 shows the assumed relative placement of 
fibres in the x - z  plane. In this symmetry it is sufficient 
to model a unit cell with finite elements, if the sym- 
metry conditions are taken care of with respective 
boundary conditions at all sides of the model. For  
a load in the z direction these boundary conditions are: 

�9 Nodes at the bottom (z = Zmi,): no displacement 
allowed in the z direction. 

�9 Nodes at the top (z = zm~x): displacement in the 
z direction is forced to be the same for all nodes. 
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Figure I Assumed relative placement of fibres within a specimen 
with a high degree of fibre orientation. 
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�9 Nodes at the left (x = Xmin): no displacement al- 
lowed in the x direction. 

�9 Nodes at the right (x = Xmax): this plane is not an 
ordinary symmetry plane since the mirror image of 
the side x > xmax at the line Xmax does not coincide 
with the side x < Xmax- However, there is a point 
symmetry for each node having z = (Zm,x + Zmin)/2- 
If one regards any of these nodes the following 
symmetry relations hold for all nodes with the same 
value of x 

Ux(l) + Ux(J) = 2"Ux(K) 

U~(1) + U,(J) = 2-Uz(K) 

K is the node with z = (Zm,x + Zmi,)/2- The nodes 
! and J have the same x value as K, but lie symmet- 
rical to K (one above and the other below). The 
terms Ux(K) and Uz(K) take care of a general dis- 
placement of the plane, which is caused by Poisson 
contraction in the case of Ux(K). The nodes I and 
J always move anti-symmetrically with respect to K. 

Apart from these constraints the used symmetry intro- 
duces as a free parameter the quotient a/b (see Fig. 1). 
If everything else is kept fixed, this parameter controls 
how close the fibres lie together in the x (respectively 
y) and the z directions. A good assumption for its 
default value is a/b = 1 [-1, 12]. 

The FE mesh used is shown in Fig. 2. It was 
modelled with 4-node quadrilateral elements with 
2 x 2 integration points (ANSYS program: STIF42). 
The option for rotational symmetry was used. This 
has the advantage that the modelled unit cell appears 
to see rotationally symmetric conditions to its neigh- 
bouts with respect to the z axis, which is more realistic 
than assuming a plane strain or plane stress condition. 
On the other hand, note that it is impossible to fill up 
a 3D space with adjacent rotationally symmetric unit 
cells. On the whole the predictions of composite stiff- 
ness with this rotationally symmetric model come 
close to a few pm~ent of those of the above-mentioned 
3D model, which in turn was shown to be rather good 
[1, 12]. 

Since fibres in real composites do not have a coup- 
ling agent at the ends (fibres are broken after being 
coated) the model assumes no contact (i.e. no load- 
carrying capability) between fibre end and matrix. 
This means that a tensile load applied on the com- 
posite in the z direction opens a microcrack at the top 
of the fibre between fibre and matrix. This in turn 
leads to singular stress behaviour at the fibre end 
(x = rr, z = lr/2) (which was illustrated in [1, 12]). 

2.2. Fracture mechanics approach to 
modelling microcrack propagation 

Since stresses are singular at the fibre ends it is as- 
sumed that with increased load cracks will start to 
propagate from these locations. Fig. 3 shows several 
possible paths. All cracks in this model propagate 
simultaneously due to the high symmetry of the 
model. When the cracks grow together the FE model 
separates into two parts, corresponding to the 
modelled specimen separating into an infinite number 
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Figure 3 Considered crack paths: the symmetry of the paths results 
from the symmetry of the fibre arrangement. 
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Figure 2 Typical finite element mesh used in the analysis, consisting 
of 220 x 30 elements. 

of parts. Note that the propagation of identical cracks 
and the separation into not just two parts stems from 
the idealization of this model makes with respect to 
the relative fibre placement. 

The stress conditions for crack propagation and the 
crack paths were determined with the help of a classi- 
cal fracture mechanics criterion. A well tested criterion 
for elastic and isotropic materials to determine 
whether or not a crack will propagate under a given 
load is Irwin's G criterion of the energy release rate 
[13, 14]. It is based on the elastic energy 8U released 
per additional crack area 8A of a virtual crack exten- 
sion under a given load and for a given direction of 
crack propagation 

G = - 8 U / S A  

This value is compared with a critical value Go, which 
depends only on the material through which the crack 
travels. If G < G~ for a given load the crack will not 
propagate; otherwise it will. The direction a crack will 
take in a homogeneous and isotropic medium is that 
in which the calculated value of G has a maximum 
[14]. 

For correct calculation of the crack propagation the 
following procedure should be carried out. The load 
on the model should be increased in small steps. Fol- 
lowing each increase in load, several FE meshes with 
small cracks in different directions starting from the 
existing crack should be generated and the corres- 
ponding values of G should be calculated. If any of 
these values exceeds Gc the crack should be extended 
by a small amount in the direction corresponding to 
G . . . .  as described above. Before further increasing the 
load it must be ascertained whether this configuration 
is stable with respect to the applied load by repeating 
the virtual crack propagation process until the crack is 
stable. Should no stable state be reached the crack will 
(unstably) travel towards another crack coming from 
the neighbouring unit cell due to the symmetry. When 
these cracks meet the modelled specimen rips apart. 

This procedure requires an algorithm to automati- 
cally generate an FE mesh for an arbitrary crack 
geometry. However, the mesh generator provided by 
the FE program used did not work reliably so that 
instead the following simplified procedure was carried 
out. For the mesh shown in Fig. 2 and the geometrical 
and material values given in Table I, several possible 
crack paths as indicated in Fig. 4 were investigated by 
decoupling adjacent elements by new nodes introduc- 
ed into the model. First consider the path shown in 
bold: the crack path was assumed to continue from the 
pre-existing crack (see above) at the fibre end (x = rf, 
z = le /2) ,  since due to the stress singularities this 
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should be the "weakest" point in the model. This 
assumption is strengthened by the experimental obser- 
vations described in the introduction. This crack was 
elongated in successive calculations in the negative 
(downward) z direction along the fibre matrix inter- 
face and, from a certain point on, in successive calcu- 
lations in the positive (to the right) x direction through 
the matrix until it reached the border of the model. All 
FE calculations were performed at a total model 

T A B L E  I Default geometrical and material parameters used in 
the investigations. 

Parameter  Value 

rf 
If 
Vf 
Ef 
uf 
Em 

Ge,fibre matrix 
Go,matrix 

7 #m 
0.18 m m  
17.58% 
70000 N m m  2 
0.35 
1990 N r am-  2 
0.42 
0.0309 kJ m -  2 
0.0483 k J m  2 

~/~Fibre 

----[Matrix 

strain ofs = 1%. For  each case the potential energy in 
the model U(s = 1%) was calculated, so that G as 
defined above could be evaluated from successive cal- 
culations, assuming materially linear behaviour. 

The bold curve in Fig. 5 shows the behaviour of 
G with increasing fracture area A. As shown above, 
G scales proportionally with the potential energy 
U which implies that G is quadratic in the applied 
external strain s. The G values shown in Fig. 5 there- 
fore scale with s2. When the strain is continuously 
increased starting from s = 0% then, at a certain 
strain, G will exceed Gc,fibre_matrlx and the crack will 
open up to the respective crack area A. A further 
increase in strain will scale the G A curve to higher 
G values, so that the crack opens further. In this way, 
stable crack growth with increasing strain will con- 
tinue up to the crack area A = 0.00194 mm 2. Assume 
for the time being that the crack will now propagate 
into the matrix. This leads to a change in stress mode 
at the crack tip, which explains the sudden increase in 
G. From then on, the calculated G must be compared 
with G . . . .  trix as opposed t o  Gc.fibr e_matrix. The falling 
of the G-A curve again means stable crack growth 
with increasing total strain. At the strain correspond- 
ing to the following minimum in G, however, the crack 
becomes unstable: this means that without a further 
increase in externally applied strain the crack growth 
releases more potential energy from the model than is 
needed to drive the crack further, thereby leading to 
failure of the whole model. 

Fig. 4 also shows several other cracks. Their paths 
merely differ from the crack described above in the 
amount of cracking allowed in the z direction, before 
turning off in right angles into the matrix. The corres- 
ponding G versus A dependencies are also shown in 
Fig. 5. We must now discuss which of these cracks 
comes closest to reality. Tensile tests with short fibre- 
reinforced specimens have a continuously increasing 
stress-strain curve until suddenly the specimen fails. 
This implies that the final failure of the specimen is 
through cracks growing together unstably. Looking at 
the investigated cracks in Fig. 5 starting from the left, 
the crack corresponding to the bold line is the first to 
fulfil this criterion. It may be noted further that the 
instability is more significant in the bold curve than in 
all others. The reason for this lies in the fact that due 

Figure 4 Crack paths investigated. 
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Figure 5 Dependence of the energy release rate G on the total crack 
area A at a model strain of 1% for several crack paths, 



to the chosen geometry only this crack grows frontally 
towards a crack in the neighbouring cell simulated by 
the boundary conditions. It is therefore reasonable to 
consider the crack drawn in bold in Fig. 4 as the crack 
"closest to reality". In the further discussion only this 
crack path will be considered. 

2.3. Derivation of stress-strain curve from 
G A  dependence 

We will now derive from the G versus A dependence 
an ~ versus A dependence. In Fig. 5 all G values were 
calculated for ~ = 1%. As explained earlier G scales 
quadratically with e. To determine at which strain 

a failure from crack area A to A + AA will develop 
the following scaling formula can be used 

•/ Gc 
e(A) = G(A,~= 1%) 1% 

2.4. Determination of Gc values 
The values for G~ used above were determined by 
a comparison of an experiment with the correspond- 
ing FE calculations for a specimen with the same 
geometrical and material data. It was assumed that 
the experimentally observed maximum stress corres- 
ponds to a state in which the crack is still between 
fibre and matrix, while the experimentally observed 
failure stress corresponds to the unstable formation of 
the matrix crack. These assumptions are motivated by 
the stress-strain behaviour shown in Fig. 6. 

The G . . . .  trix value used in the previous section to 
derive the stress strain curve is roughly two orders of 
magnitude lower than those quoted in the literature 
[15]. This discrepancy may be due to the fact that the 
macroscopic measurement is carried out on a speci- 
men made of neat matrix whereas in this case the 
fibres restrict matrix deformation and lead to different 
failure modes. This discrepancy is discussed in detail 
in [1]. 

Here G~ must be set to  Go,fibre_matrix or to  Go,matrix 
according to whether the crack travels along the 
fibre/matrix interface or through the neat matrix. 

The corresponding FE model with the respective 
crack has a stiffness E(A) depending on the crack 
area. Therefore the overall model stress cy corres- 
ponding to the strain a can be calculated via 
(~(A) = E(A)'~(A). 

Using the assumptions Gc,fibr e_ matrix = 0.0309 kJ m -  2 
and G . . . .  trix = 0.0483 kJ m-z ,  the derivation of which 
is discussed in the next section, one obtains the 
stress strain curve shown in Fig. 6. The dots represent 
cy-~ pairs for consequent cracks. Consider the speci- 
men being exerted to steadily increasing external 
strain. The crack grows along the fibre-matrix border 
(open points) up to a strain of about 2% where it 
angles off into the matrix (filled points) until the 
crack becomes completely unstable at ~ = 2.16%. 
Note that the indicated retraction of the strain 
when the crack changes its direction is due to the 
evaluation method and is not physical. The fact that 
the specimen does not rip apart at the calculated point 
of maximum stress but at higher strains is probably 
due to the simplified assumption made about the 
crack path. 
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3. Results 
3.1. Dependence of failure stress and 

strain on geometrical and material 
parameters 

The technique described above was used to study the 
dependence of failure stress and strain on individual 
model parameters, namely the fibre length lf, fibre 
radius rf, fibre volume fraction Vf and fibre modulus 
Ef. The results are shown in Figs 7-10. Each of these 
curves is based on a standard model composite with 
properties according to Table I where only the investi- 
gated parameter was varied. 
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Figure 6 Stress strain behaviour resulting from the assumed grow- 
ing of cracks. 

Figure 7 Influence of the fibre length If on composite maximum 
s t r e s s  CYma x and strain ~;max" 
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Figure 8 Influence of the fibre radius rr on composite maximum 
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In order to qualify the model described here a 
comparison between experimental observations and 
model predictions had to be made. 

3.2. Quali tat ive compar ison of predict ions 
wi th results of other exper imenters 

This comparison was made on a qualitative rather 
than quantitative basis since in all the experiments 
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Figure 10 Influence of the fibre modulus Er on composite maximum 
s t r e s s  O-ma x and strain Cmax. 

cited in the literature some data were missing, pre- 
cluding the possibility of a precise evaluation by this 
model. The following experimental observations on 
highly orientated short fibre-reinforced specimens by 
Ramsteiner and Theysohn [16] and Curtis et al. [10] 
are, however, qualitatively predicted by the model 
introduced here: 

(i) failure stress increases with increasing fibre vol- 
ume fraction Vf [10, 16]; 

(ii) failure strain decreases with increasing fibre vol- 
ume fraction Vf [10]; 

(iii) failure strain decreases with increasing fibre 
l eng th  I r [10] and 

(iv) failure strain decreases with increasing fibre 
modulus Er [10]. 

4. C o n c l u s i o n s  
For the special case of highly oriented short fibres in 
a matrix under load in the fibre direction a combina- 
tion of FE model with a standard fracture mechanics 
concept was developed to predict the failure stress 
and strain of a composite for which all geometrical 
and material parameters (If, dr, Vf, El,  Era, Vr, Urn, 

ac , f lb  . . . .  trix, G . . . .  trix) may be chosen freely. The 
model makes rather crude assumptions about the 
ideal structure of the composite and about the crack 
path. This leads to a stress-strain curve for continu- 
ously increased loading which does not describe ex- 
perimental observations on real specimens too well for 
large strains. However, the microcracking at small 
strains which is also observed in acoustic emission 
analyses is predicted. Further, the failure stresses and 
strains correlate well qualitatively with experimental 
observations. 



The model presented here should not be thought of 
as being fully developed. However, the investigations 
presented here should encourage further research in 
the direction of FE algorithms combined with fracture 
mechanics for predicting composite failure behaviour. 

For completeness, it should be noted that an exten- 
sion of this model for the case of a macroscopic inter- 
layer between fibres and matrix has also been de- 
veloped. This is documented in Eli. 
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